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SUMMARY 
Thermo-mechanico-electromagnetic coupled waves propagating in a linear isotropic thermo-elastic dielectric 
material are theoretically investigated, in case an external magnetic field is applied to the material. Here the 
constitutive equations derived from the Clausius-Duhem inequality and Vernotte's heat conduction law 
are adopted. There are three types of coupled waves: the predominantly electromagnetic wave, the pre- 
dominantly mechanical transverse wave and the predominantly thermo-mechanical longitudinal wave. The 
first and second waves have no thermal coupling. The third wave has thermal coupling and its propagation 
velocity and attenuation constant are perturbed by the external magnetic field. 

1. Introduction 

For  a polarizable, non-conducting, non-magnetic, deformable elastic dielectric, Toupin [1] 
proposed a remarkable dynamic phenomenological theory, and derived a unified mathe- 
matical theory of the piezoelectric, photoelastic properties, the Faraday effect, and magneto- 
elastic dragging of  the elastic dielectric material. Basing on Toupin's  theory, McCarthy [2] 

and McCarthy and Green [3] analysed the propagation and growth of plane acceleration 
waves in a hyperelastic dielectric material in an external magnetic field. Tokuoka  and 

Kobayashi  [4] investigated the mechanico-electromagnetic coupled wave in a linear iso- 
tropic elastic dielectric material, where the suppressed magnetic field was assumed to have 
any direction relative to the propagation direction. 

On the other hand, thermal effects on elastic waves have been studied widely. Among 
the numerous literature, Thurston [5] discussed in detail plane harmonic waves propagating 
in an elastic conductor of  heat, where the Fourier 's  law: 

q = - t o  grad T (1.1) 

was employed, where q is the heat flux, ~c is the conductivity. As a consequence of it, the 
temperature field is governed by a parabolic equation and then a thermal disturbance 
propagates with an infinite velocity. In order to remedy this unpleasant feature, Vernotte 
[6] proposed a modified Fourier 's  law: 

1 
= - - -  (q + tc grad T), (1.2) 
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where the superposed dot denotes the material time derivative and z is a relaxation time. 
Making use of the modified law Tokuoka [7, 8] investigated the propagation and growth 
of plane acceleration waves in an isotropic linear thermo-elastic material. It was shown 
that there exist two purely mechanical shear waves with a velocity v s and two thermo- 
longitudinal waves with velocities/)TL] 

V2L = V[[1 + �89 + ~ -- 1) _+ {qF + ~ -- 1) z + 47}t]1, (1.3) 

and a damping constant VTL given by 

flz {(VTL/VL)2 _ 1}2 

F T L -  2 (VTL/VL)2['~ "t- {(DTL/VL) 2 - -  1} 2] ' (1.4) 

where 

vs = \ p ) ,  v ,  = p (1.5) 

denote, respectively, the purely mechanical transverse and longitudinal wave velocities and 

~c (32 + 2#)2ct2T o 
f12=_ , ~ =  (1.6a, b) 

(~ + 2a)CvZ p(2 + 2a)Cv 

are dimensionless material constants, where 2 and p are the Lain6 elastic constants, e is the 
coefficient of thermal expansion, Cv is the specific heat at constant volume and p is the 
density. 

This paper has two purposes, one is to investigate the propagation of plane infinitesimal 
thermo-mechanico-electromagnetic coupled waves in a linear isotropic thermo-elastic di- 
electric material, and the other is to reveal the effects of an external magnetic field on 
thermo-acoustical waves. 

2. Basic equations 

The electromagnetic field in polarizable, non-conducting, non-magnetic, deformable media 
is governed by the following system of equations: 

OB 
~t + c u r l E  0, d ivB 0, (2.ta) 

~D 
curl H - - -  = 0, div D = 0 (2. Ib) 

~t 

with 

H = # o l B  + Yc x P,  D = eoE + P. (2.2) 

The vectors E, B, D, H and P are the electric field, magnetic flux density, electric flux 
density, magnetic field and polarization, respectively, x is the position vector of the particle. 
The fundamental constants #o and % are related to the speed of light in vacuum by 
/~oeo = c -2. In addition to (2.1), let us assume an equation of molecular equilibrium: 

+ L E = 0, (2.3) 
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which was introduced by Toupin [9], where L E is the local field and 

g = E + ~  x B (2.4) 

is the effective field intensity. 
The conservation laws of mass and linear momentum are expressed as 

ap 
a--t- + (P2i)" = 0, (2.5) 

pX' = a',~ + f ' ,  (2.6) 

where a i j, f i  are, respectively, symmetric Cauchy stress and body force per unit mass. 
Here and henceforth, a rectangular Cartesian coordinate system is employed, and a 
comma followed by a suffix denotes the partial derivative with respect to a coordinate. 
Now we consider the body force originating in the electric polarization, that is, 

f = - (div P )g  + b x B, (2.7) 

where 

/ , =  ~P 
--7 + ~ div P + curl(P x 2) (2.8) 

is the convected time derivative of P. The balance law of energy for a dielectric material 
in the absence of free charge, current, magnetization and heat supply is given by 

P(0 + Tt/)" *" j i = a j x i  + PiS~ - q,~, (2.9) 

where ~ and 1/ are the specific Helmholtz free energy and entropy, respectively [10]. In 
order to complete the field equations, the heat conduction law (1.2) must be assumed. 

Now consider waves propagating in a thermo-elastic dielectric in an external constant 
magnetic field B o. Then we can put 

E = e ,  B = B o + b ,  P = p ,  x = u  (2.10a, b , c , d )  

where e, b, p and u denote the wave fields and the suffix zero denotes a quantity evaluated 
in equilibrium. The wave fields are assumed to be weak and the dimensionless temperature 
0 = ( T  - To) /T  o to be small and then the second and higher order terms of them and their 
derivatives may be neglected. 

Let us take the constitutive assumptions: 

0 = ~(ek,,, O, pg), aij  = #ij(ekm, O, Pk), 

11 = O(ek,., O, pg), Lei : Lei(ekm, O, pg), 

where ekm = (UR,,. +Um, k)/2 is the infinitesimal 
Clausius-Duhem inequality: 

PO > - - - q , i  + q~T~ 
= T 

strain tensor, 

(2.t la, b) 

(2.1 lc, d) 

and let us consider the 

(2.12) 
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which must be satisfied for all admissible processes [11] and is reduced to 

1 
p ( ~  + ~l~i, ) i .  j �9 i T - ~ix,i + LgPi + ~ q ,i < O. (2.13) 

From (2.11a) and (2.13) we can conclude that 

a'J = p ~ ,  tl = To ~0 ' Lei -- p OP i ,  (2.14a, b,c) 

qiTi < O. (2.15) 

The free energy may be approximated by the quadratic form: 

ptk = �89 + C~JeljO + �89 2 + S~Je~jp k + S f l p  ~ + �89 J, (2.16) 

where C i jk ' ,  C I J, C, S ] ,  S~ and )~  ~ are material constants and have the following symmetry 

(2.17a, b) 

(2.17c, d) 

(2.18) 

(2.19) 

(2.20) 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

(2 .21e)  

relations: 

c i J  km : C jikm : c i J  m k :  C kmiy, c i J  : C yi, 

S~ ~ =  S~ i, z i i =  zj~. 

Substituting (2.16) into (2.14), we have 

a iJ = cijkm~k m -~- CiJO -~- S~Jp k, 

1 
t 1 - P T  ~ (c iJe i j  + CO + S~pi), 

km 
--Lei  = Si el~m + Z~jlp j + SiO. 

Since we assume an isotropic material, we have 

ci jkm : ~ i j ~ k m  _~_ #(~ik~jm .~_ oim~jk), 

C ij = -p (32  + 2#)c~To 6~j -- - A 3  i j ,  

C = - pcvTo,  

S~ J = St = O, 

- 1  1 
Xij = (~o)0- 6~j, 

where Z is the polarizability constant and A is the thermo-elastic coupling constant. 

3. Plane harmonic waves and propagation condition 

Let us consider a plane harmonic wave with attenuation constant a, wave number k, 
frequency e) and propagation direction n, that is, 

F = P e x p ( F n ' x  - io)t), (3.1) 

F = a + i k  (3.2) 

where F stands for the small deviation fields u i, el, b~, pi,  q~ and 0, F denotes the corre- 
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sponding complex amplitude and a is related to the damping constant v defined by Tokuoka 
[7] through a = -v/ (w) .  Now assume 

a ~ k, (3.3) 

which means that the attenuation of wave amplitude is negligibly small within a propagation 
distance compared to a wave-length. Refer to Thurston [5]. 

From (1.2), (2.1), (2.3), (2.6) and (3.1) we have 

-pogZffti = {,ttu i q- (2 q- #)ninf iJ)F 2 - icoeijkffJB~ -- pAFniO, (3.4) 

- i , o ( ~  • ~ o )  - ( ~ o Z ) - l ~  = o ,  ( 3 . 5 )  

F 
- - ( n  x b) + icoeo~ + icop = O, (3.6) 
#o 

r ( n  • ~)  - i , o ~  = o ,  (3.7) 

n.(%~ +/~) = 0, n .b  = 0, (3.8a, b) 

1 
-io9(1 = - - - ((1 + xToFnO), (3.9) 

z 

where eijk is a permutation tensor. From (2.14), (2.19) and (2.21) the energy equation (2.9) 
gives 

Fn'( l  = icopAFn. ~ + icopcvTo O. (3.10) 

Let us assume that the wave propagates alongt he x3-axis and the magnetic field has an 
direction specified by direction cosines (l 1, 12, 13). Then we have arbitrary 

n ~  

By (3.6), 

(0, 0, 1), Bo = (Boll, Bolz, Bol3). (3.11a, b) 

(3.7) and (3.11a), we obtain 

e =  eo(N 2 _  V 2) _P~, eo(N 2 _  V2 ) P2, - P3 , (3.12) 

( N V 2  N V  2 ) 
= - e o v ( N  z _ V 2) fi2, %v(~--~ ~ V 2) Pa, 0 , (3.13) 

where v = co/k is the wave velocity, V = v/c is the dimensionless velocity and N = 
=- ( - i F ~ k )  = 1 - i(a/k). The electromagnetic field deviations (3.12) and (3.13) satisfy the 
relation (3.8) identically. From (3.4), (3.9) and (3.11) we have in case of v # Vs and v # vL 

iB o V 2 V 2 

= pco V z VZN2 (P213 - /33/2) ,  iB~ _ p---~ V 2 V~N 2 (p3ll -/5113) , 

iBo V 2 iA V 2 "~ 
poo V 2 V~N 2 (P~12 - 122ll) + V ~ N O )  (3.14) ~ov - V ( N  2 ' 

where Vs ~- vs/e and VL = VL/C, and 

( (tcT~ o )  (3.15) 
= 0 ,  0 ,  v[1 + ( i /~co) ]  " 

Journal of Engineering Math., Vol. 10 (1976) 95-105 



100 M. Saito and T. Tokuoka 

In the last section the uncoupled waves with velocities Vs and VL will be discussed. 
Eliminating ~, ~ and ~ in (3.5) and (3.10) by (3.12), (3.14) and (3.15), we can obtain a 

set of linear homogeneous equations with respect to the polarization amplitude p and the 
dimensionless temperature amplitude 0, 

Q(V 2, l)p = 0 (3.16) 

where p is a four-dimensional vector with components (/31, P2, t33, O) and the symmetric 
4 x 4 matrix Q(V 2, l) is given after some lengthy manipulations as follows: 

(I +z)v 2-N 2 Ally AI V AfAr2 
+ F 

N 2 _ V 2 V2N 2 _ V 2 VLZN 2 - -  V 2 V~N z - V z 

(1 + z ) V 2 - N  2 Al2V  2 A t?V  2 

N 2 _ V z + V~N 2 - V 2 + VZN z _ V 2 

where 

A = - -  

Alf l l  V 2 Al2 V 2 

-- Vs2N 2 __ V 2  pz~  , Bo~ L -- V2N 2 V2 N 

Alz13V 2 All  V 2 

Vs2N 2 _ V2 -- pA.  Boy VL2N 2 , V2 N 

(1 A(12+12)V2) 
- + x ) -  

P AB z~ { PCv To - _ ~T~z ( l  q - i \ - 1  2 P Az V2 
~-~) N + -~ VL2N2 V2 N 2} 

(3.17) 

eoZB~ (3.18) 
P 

is a .dimensionless quantity depending on the material constants and the suppressed mag- 
netic intensity. 

For a wave to exist, the amplitude 9 must not be a null vector and then from (3.16) we 
have the propagation condition: 

detQ(V 2, l) = 0, (3.19) 

which gives, in general, six propagation velocities for a given direction of the external 
magnetic field. Substituting a solution V e of (3.19) into (3.16) we have an amplitude 9. 
The ratio of the amplitude can be given by the ratio of the cofactor with respect to any 
row elements of Q, that is, 

Pl : pz :/33 : 0 = 0~1 : 0~2 : 0~3 : 0~4 (3.20) 
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for any e = 1, 2, 3, 4, where 0.~ indicates a cofactor of an element Q~p. By substitution 
of (3.20) into (3.12), (3.13) and (3.14), we can obtain the ratios of the amplitudes of [, 

and ~. 
In practice A is a very small quantity, e.g., it is approximately 10 -9 for Bo = 10 4 Gauss, 
= 10 and p = 8 x 10 3 Kg/m 3. Thus we may suppose that, while waves in a non-vanishing 

magnetic field must be, in general, thermo-mechanico-electromagnetic coupled waves, they 
consist of the predominantly electromagnetic waves, the predominantly mechanical trans- 
verse waves and the predominantly thermo-mechanical longitudinal waves, and their propa- 

gation velocities deviate from the values of c/~/1 + Z, Vs and v~. about O(A) in the first 
approximation. 

To begin with, let us consider the predominantly electromagnetic waves. The small 
quantities Vs 2 and VL 2 can be neglected in comparison with V 2, the (1.4) and (2.4) elements 
of  Q become O(1/c), and the (4.4) element becomes pAcvTo/B 2 + 0(1/c2). Thus the thermo- 
elastic coupling constant A has no effect on the propagation condition. In other words, the 
predominantly electromagnetic waves suffer no thermal influence in our approximation, 
and so the propagation condition is reduced to the one treated by Tokuoka and Kobayashi 
[4] and the attenuation constant a vanishes. 

In the case of predominantly mechanical transverse waves, V 2 can be considered to be a 
small quantity and we can estimate that Vs 2 - V 2 ,,-, O(A). Then the (1.4), (2.4) and (4.4) 
elements of Q become of higher order than the other elements. The thermo-elastic coupling 
constant A, therefore, does not appear in the propagation condition, and the predominantly 
mechanical transverse waves do not suffer any thermal effect within the assumed approxi- 
mation. 

For the discussion of the predominantly electromagnetic waves and the predominantly 
mechanical transverse waves, we refer to Tokuoka and Kobayashi [4]. 

4. Predominantly thermo-mechanieaI longitudinal waves 

In the case of no electromagnetic effect, the propagation condition (3.19) gives 

~cTo { 1 i )-1 pA  2 V 2 N 2 
PCvT~ zv z \ + z L  Nz + v ~ V2N 2 - -  V 2 = 0. (4.1) 

Then, if there is an electromagnetic effect, the left-hand side of (4.1) can be estimated to 
be O(A). So we have the propagation condition as follows: 

o(1) + o(A) O(A) O(A) O(A) 

O(1) + O(A) O(A) O(A) 

O(1) + O(A) O(A) 

O(A 2) 

= 0. (4.2) 

If  we retain the second-order terms of A and neglect the third- and higher-order terms 
in the determinant (4.2) and also neglect V 4 in comparison with V 2, we obtain the complex 
propagation condition: 
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i xTo 2 v 2 2 

+ 0. 
where the relations v = cV and VL = CVL have been used. 

The real part of  (4.3) gives 

( v2)2 + + p c v T  o ] ( v  2 - + pA2 {v~  - v 2 A ( I  2 12)v2} = 0 (4.4) 

in virtue of the basic assumption (3.3). Then we have 

( )  ( )  v * f12 z v z (V/VL)2 - -0 ,  (4.5) 
~-L - ( i  + + ?) +/~2 - ? ~ A(Z~ + li) 1 - (v%) ~ 

where flz and ? were defined in (1.6). Equation (4.5) may be reduced to the equation derived 
by Tokuoka and Kobayashi [4] when A is equal to zero. The solutions of  (4.5) are 

V = VTL[1 + (VTL/UL) 2 A(I~+I~)?  1 ~ 
- 1 - @Tdv~) 2 {(/~ + ~ --]) ~ ~ 4?}* (4.6) 

within the first order of A, where VTL denotes the velocity of the pure thermo-longitudinal 
wave and is given by (1.3), and the double signs in (4.6) and (1.3) must be taken in the same 
order. The second term in the bracket in the right hand side of (4.6) represents the effects 
of  the external magnetic field. 

Now consider the imaginary part of  (4.3). Using the assumption (3.3), we obtain 

2a v 2 pcvT o ~v 2 ,] + ;A  2 1 + v 2 -  v 2 + v ~ -  v ~ - mv " - - q -  

{ A(z~ + z~)} - pc?T~ ( v ~ - v  2 )+  pA2 1 + , (4.7) 
TV TV #2  L _ 1)2 

which gives the attenuation constant: 

1 ~ {(vtvL) ~ - 1} ~ 
# =  

"C/) 2 (V/VL)Z[7 + {(V/VL) 2 -- l }  2] 

[ 2A(I~+12)? ( V / V L ) 2 ]  (4.8) 
x 1 + ?+{(VlVL)2--  1} 2 (V/VL) 2 _  1 ' 

within the first order of  A. When the external magnetic field vanishes, we have the attenu- 
ation constant for thermo-acoustical waves obtained by Tokuoka [7]: 

VXL (4.9) 
aTL = - -  _ _  

WTL " 

The effects of the external magnetic field appear in (4.8) not only through the perturbed 
term but also through the velocity relation (4.6). 
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From (4.6) and (4.8) we can say that the influence of the external magnetic field on the 
propagation velocities and the attenuation constant of thermo-acoustical waves is determined 
by (l 2 + 12z) which is the square of the component of  the projection of the vector I on the plane 
normal to the propagation direction. 

When the suppressed magnetic field is parallel to the propagation direction, i.e., 
11 =12 = 0  and 13 = 1, we have 

V---VTL , a=aTL.  (4.10a, b) 

This means that the thermo-acoustical waves may propagate without being influenced by 
the electromagnetic field if the direction of the external magnetic field coincides with the 
wave propagation direction. 

The ratios of amplitudes can be obtained easily. From (3.20) we have to the first order of A 

Pl :P2 :P3-" 0-~ 0 : O: O: 1. (4.11) 

In order words, the polarization amplitude 1~ is of higher order than the dimensionless 
temperature amplitude O. Similarly we have 

0 '  0 '  0 = O(A). (4.12) 

Substituting (4.11) into (3.14), we have 

ul ~2 
0 ' 0 = O(A) (4.13) 

and by assumption (3.3) 

(v/vL) 2 -  1 A 0 
- (4 .14 )  

(vlvO 2 vL ( -  ic9~3) ' 

which is identical with the amplitude ratio given by Tokuoka [7] for thermo-acoustical waves 
except that v in (4.14) is not VTL but is given by (4.6). 

Then we can say that within the order A (i) eleetromagnetiefields over the constant external 
magnetic fieM are not induced by the propagation of the predominantly thermo-mechanical 
longitudinal waves and (ii) the suppressed magnetic fieM influences the ratio of the amplitude 
only through the change of the propagation velocity. 

5.  U n e o u p l e d  w a v e s  

In Sec. 3 we assumed that v # Vs and v # v~. Here we discuss the possibility of existence 
of waves having the propagation velocities Vs and rE. 

Let us consider the case of v = Vs and a = 0. From (3.4) we have 

ff2~ - P3~  = 0, ffall - f ix~ = 0, 

v~ - v~ iBo i~  
v~ u3 + p o  ( P l ~  - p2 l l )  + - - 0 o r s  = 0. 

(5.1a, b, c) 
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Eliminating q f rom (3.9) and (3.10), we obtain 

{ xT~ pv~(1 + z i - ) c v T o } O = i c o ( l +  zioo)pAvsff3 . (5.2) 

Substituting (3.12) into (3.5) we have 

ipco 
ip09 A/aft2 + Al2fi 3 = 0, 

ipto ipe9 
- P2 + Alaff 1 - - -  All~ 3 = 0, (5.3a, b, c) 

Bo Bo 

ipco AI2ul + ipco Allu2 = O. 
- (1 + Z)Pa - Bo Bo 

Then we can easily conclude that  a wave with amplitude 

f f ~ 0 ,  ~ 3 = 0 ,  p = 0 ,  0 = 0  (5.4) 

may exist, if and only if 

ul  : u2 = ll : 12, la - 0. (5.5) 

In  the case o f  v = VL and a = 0, we can conclude by a similar argument  that  a wave with 

amplitude 

u a ~ 0 ,  u~ = u 2 = 0 ,  ~ = 0 ,  0 = 0  (5.6) 

may exist, if and only if 

l 1 -- l 2 = 0, A = 0. (5.7) 

Thus we can say that  (i) i f  the suppressed magnetic field is perpendicular to the propagation 
direction, purely mechanical transverse waves exist, where the wave oscillates along the 
magnetic field and (ii) the purely mechanical longitudinal wave ean not exist unless the thermo- 
elastic coupling constant vanishes even i f  the suppressed magnetic field is parallel to the 
propagation direction. 
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